学》《術》

綜 説

うつ病の神経細胞新生仮説

新潟大学大学院医歯学綜合研究科精神医学分野 教授 朴 秀 賢

はじめに

21世紀に入ってからの分子生物学、神経科学、画像診断技術の飛躍的な進歩により、これまでブラックボックスとされてきた精神疾患の病態メカニズムが徐々に解明されつつある。特に脳科学技術の発展は目覚ましく、fMRI、PET、光遺伝学などの革新的手法により、精神疾患の理解は飛躍的に深まっている。

しかしながら、このような科学的進歩にも関わらず、最も罹患者数が多く社会的損失が大きい精神疾患であるうつ病の治療においては、依然として半世紀以上前に確立されたモノアミン仮説に依拠した抗うつ薬による薬物療法が中心となっており、その治療効果の限界が指摘されている。世界保健機関(WHO)の統計によれば、世界中で約2億8,000万人がうつ病に罹患しており、これは全人口の約3.8%に相当する。さらに深刻なのは、この数値が年々増加傾向にあり、2030年代には社会的損失が最も大きい疾患になると推測されていることである。

従来のモノアミン理論では、モノアミン(セロトニン、ノルアドレナリン、ドパミン)の不足がうつ病の主因とされてきた。この理論に基づいて開発された三環系抗うつ薬や選択的セロトニン再取り込み阻害薬(SSRI)などの抗うつ薬は確かに一定の効果を示すものの、治療反応性は約60-70%程度に留まり、完全寛解に至る患者の割合は約30-40%程度とさらに低い。また、理論上はシナプス間隙における神経伝達物質の濃度が改善されれば即座に効果が現れるはずであるにも関わらず、実際の抗うつ薬の治療効果が現れるまでには数週間を要するという矛盾(時間的ギャップ)も存在している。

更に深刻な問題として、うつ病の確定診断に有

効な生物学的マーカーが未だに確立されていないことが挙げられる。現在の診断基準であるDSM-5やICD-11は主に症状に基づく主観的な評価に依存しており、客観的な生物学的指標は存在しない。これが誤診率の高さ(約20-30%とされる)や治療選択の困難さに繋がっている。実際、うつ病と診断された患者の中には、双極性障害、不安障害、適応障害など他の精神疾患が含まれている可能性が高く、これらの誤診は不適切な治療に繋がり、患者の症状改善・社会復帰を阻害している。こうした背景から、モノアミン仮説を超越する

こうした背景から、モノアミン仮説を超越する新しい病態仮説と新規検査および治療薬の確立が急務となっている。本稿では、モノアミン仮説に代わるうつ病の有力な病態仮説である神経細胞新生仮説について紹介させていただく。

成体海馬神経細胞新生の発見

1960年代初頭、マサチューセッツ工科大学の Joseph Altman は、分裂中の細胞のみに取り込ま れるトリチウム (³H) 標識チミジンを用いたオー トラジオグラフィー法により、成体ラット海馬歯 状回でニューロンが新生していることを初めて実 証した1)。しかし、この画期的な発見は当時の神 経科学の根本的教義「成体の脳では新しいニュー ロンは生まれない」と真っ向から対立するもので あった。19世紀末から20世紀初頭にかけて、 Golgi、Virchow、Cajalといった神経解剖学の巨 匠たちによって確立されたこの教義は、当時の科 学界では絶対的真理として受け入れられていた。 Caialの「成体中枢神経系において、神経路は固 定されており、不変で修復不可能である」という 有名な言葉がその象徴である。そのため、 Altman の発見は当時としてはあまりにも革命的 であり、受け入れられることなく、長らく忘れ去 られることとなった。

1990年代に入り、ロックフェラー大学の Bruce McEwen、Elizabeth Gould、Heather Cameron らが、ストレスが脳に及ぼす影響について研究を進める中で、ストレスが脳内の多くの領域でニューロンの萎縮や減少を引き起こす一方で、海馬歯状回では神経細胞数が維持されることに気付いた。この現象の背景に神経細胞新生があるのではないかという仮説を立て、詳細な実験的検証を行った結果、成体海馬歯状回における神経細胞新生の存在を確認することに成功した²⁾。

神経細胞新生研究の本格的な発展を可能にした のは、放射性同位体3Hに代わって、5-ブロモ-2′-デオキシウリジン (BrdU) という核酸アナログ が神経幹細胞のマーカーとして導入されたことで ある。BrdU はチミジンの類似体であり、DNA 合成期にある分裂中の細胞のみに取り込まれる。 BrdU の最大の利点は、放射線を使用しないため 安全性が高く取り扱いが容易であることに加え て、抗BrdU抗体と同時に神経細胞マーカー (NeuN、Tuj1 など)、グリア細胞マーカー(GFAP、 Ibal など)、分化段階マーカー (DCX、NeuroD1 など)との多重染色により、新生細胞の運命決定、 分化過程、成熟度を詳細に追跡することが可能に なったことである。ソーク研究所の Fred Gage らによるこの技術革新3)により、成体海馬神経新 生研究が爆発的に発展した。続いて Gage らは、 末期がん患者が死亡する1ヶ月程前に BrdU を投 与し、死後の脳組織を用いて免疫染色を行うこと で、成人の海馬歯状回でも神経細胞新生が生じて いることを示した4)。この発見により、それまで 齧歯類に限られていた知見がヒトにも適用可能で あることが示され、疾患と成体海馬神経細胞新生 の関係に関する研究への道筋が開かれた。

成体海馬神経細胞新生とは

McEwen らの成体海馬神経細胞新生の再発見以来、現在まで30年余りに亘る多くの基礎研究により、成体海馬神経細胞新生の詳細なメカニズムが明らかになってきている。海馬歯状回の顆粒細胞層下帯(SGZ)には、神経幹細胞から成熟ニューロンへと段階的に分化する細胞群が特殊な微小環境(ニッチ)を形成して存在している。この神経

幹細胞ニッチは、血管、アストロサイト、成熟ニューロン、ミクログリアなどの多様な細胞種が複雑に相互作用する構造体である。血管は酸素や栄養素の供給に加えて、血管内皮細胞が分泌する血管内皮増殖因子(VEGF)や脳由来神経栄養因子(BDNF)などの神経栄養因子・成長因子を通じて神経細胞新生を調節している。アストロサイトは構造的支持に加えて、Wntシグナル、BMPシグナル、Notchシグナルなどの神経細胞新生を調節するシグナル伝達経路を制御し、神経幹細胞の増殖と分化のバランスを精密に調節している。

成体海馬神経細胞新生の分化過程は、図1に示 すような複数の段階に区分される50。最も未分化 な Typel 細胞は神経幹細胞プールの約 2-5% と 少数を占め、長期間にわたって自己複製能力を維 持する真の神経幹細胞である。これらの細胞は、 Nestin、GFAP、Sox2 などの幹細胞マーカーを 発現し、増殖能は低いが、必要に応じて活性化さ れる。分化過程で最も重要な役割を果たすのが Type2a 細胞であり、これは神経幹細胞プールの 約60-70% を占めている。Type2a 細胞は Type1 細胞よりも活発に増殖する一方で、多分化能は維 持されており、ニューロンだけでなくアストロサ イトやオリゴデンドロサイトにも分化可能であ る。しかし、正常な生理的条件下では主にニュー ロンに分化する。更に分化が進むと Type2b 細胞 となり、この段階でニューロンへの運命決定が不 可逆的に行われる。その後、Type3細胞を経て、 最終的に成熟ニューロンへと分化する。成熟後の 新生ニューロンはSGZから顆粒細胞層に移動し、 周囲のニューロンとシナプス結合を形成する。こ の過程は極めて競争的であり、適切にシナプス結 合を形成し、機能的な神経回路に統合された

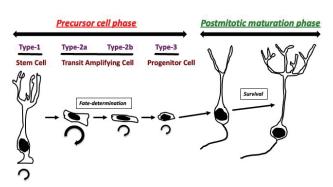


図1 成体海馬神経細胞新生の分化過程

ニューロンのみが最終的に生存する。統合に失敗 した新生ニューロンは、アポトーシスにより効率 的に除去される。

うつ病の神経細胞新生仮説

うつ病患者では視床下部 -下垂体 -副腎皮質系 (HPA 軸) のネガティブフィードバックの障害 により血中コルチゾール濃度が慢性的に上昇して おり、その上昇は抗うつ薬により回復することが 示されていた6)。また、クッシング病(コルチゾー ルの分泌が上昇する疾患)の患者における抑うつ 状態の出現や海馬体積減少も知られていたで。 従って、うつ病の病態へのコルチゾールの関与が 以前から指摘されていた。興味深いことに、 HPA 軸のネガティブフィードバックに関与して いる脳領域は海馬である。Cameron と Gould は 成体海馬神経細胞新生の再発見後まもなく、コル チゾールが成体海馬神経細胞新生を抑制すること を示した®)。加えて、MRIによるうつ病患者の海 馬体積研究のメタ解析の結果、うつ病患者の海馬 体積は健常者よりも小さいことが示された⁹⁾。こ れらの知見から、HPA 軸の障害によるコルチゾー ル上昇が成体海馬神経細胞新生の低下を介して海 馬が萎縮してうつ病が発症するという、神経細胞 新生仮説が提唱されるようになった(図2)。こ の仮説に基づき、イエール大学の Ronald Duman らが、抗うつ薬が成体ラット海馬神経細胞新生を 増加させることを2000年に示した100。この抗うつ 薬による海馬神経細胞新生増加には数週間を要し たことから、モノアミン仮説の問題点である時間

図2 うつ病の神経細胞新生仮説

的ギャップを克服可能なうつ病の病態仮説として、神経細胞新生仮説が注目されるようになった。その後、コロンビア大学のRene Hen らが、分裂細胞が非分裂細胞に比べて放射線への感受性が高いことを利用して、成体マウス海馬歯状回の神経幹細胞を選択的に減少させると、抗うつ薬が複数の行動に及ぼす効果が減弱することを2003年に示した¹¹¹。抗うつ薬の効果発現に成体海馬神経細胞新生が必要であることを示唆したこの研究により、うつ病の神経細胞新生仮説は確立した。

抗うつ薬が成体海馬神経細胞新生を増加させるメ カニズム

その後、多くの基礎研究により、うつ病の神経 細胞新生仮説の基盤が固められてきている。しか し、抗うつ薬が成体海馬神経細胞新生を増加させ るメカニズムは長年不明であった。その原因の1 つとして、抗うつ薬が成体海馬神経細胞新生に与 える影響に関する研究の全てが、ラットまたはマ ウスに抗うつ薬を投与しているため、抗うつ薬が 神経幹細胞に直接作用するのか、神経幹細胞の周 囲に多数存在しているニューロンやアストロサイ トを介して間接的に作用しているのかが、全く不 明であったことが挙げられる。抗うつ薬が成体海 馬神経細胞新生を増加させるメカニズムの解明の 第一歩として、抗うつ薬が神経幹細胞に直接作用 を有するか否かを検討する必要があり、そのため には成体海馬歯状回由来神経幹細胞の培養系の確 立が必要である。また、2006年には抗うつ薬は Typel 細胞ではなく Type2 細胞に作用すること が示されていた12)。そこで、筆者らは北海道大学 在籍時に成体ラット海馬歯状回由来の Type2a 細 胞に相当する神経幹細胞の培養系を2009年に確立 したい。この培養系を用いて、抗うつ薬は神経幹 細胞に直接作用を有しないが、抗うつ薬によって シナプス間隙での濃度が増加するノルアドレナリ ンとアストロサイトでの発現・分泌が増加する FGF2 が神経幹細胞の増殖を促進することを示 し14)、15)、抗うつ薬の間接作用仮説を提唱した16)。

ノルアドレナリンによる神経幹細胞の増殖促進のメカニズムは概ね解明されており、cAMP-PKA-CREB経路を介していることが示されている¹⁷⁾。しかし、この経路は様々な細胞で汎用され

ているシグナル伝達経路であり、この経路を標的とした新規抗うつ薬は副作用のリスクが高く、開発が困難であると考えられる。一方、抗うつ薬がアストロサイトでFGF2の発現・分泌を増加させるメカニズムは未だに不明であるため、このメカニズムの解明により有望な創薬標的となりうる分子が見出される可能性が期待される。筆者らは熊本大学在籍時に、アストロサイトでコルチゾールによる発現抑制が抗うつ薬により回復する分子として転写因子 TCF7L2を2024年に同定した¹⁸⁾。TCF7L2の前後のシグナル伝達経路の解明により、従来のモノアミン仮説に基づく抗うつ薬と全く作用機序の異なる新規抗うつ薬の開発が可能となることが期待される。

うつ病の神経細胞新生仮説の問題点とその克服に 向けて

うつ病の神経細胞新生仮説は膨大な基礎研究により強固な科学的基盤を築いているものの、臨床応用に向けては依然として深刻な問題が存在している。それは、神経細胞新生を検出する唯一の方法は脳組織標本を必要するBrdUを用いた免疫組織化学的手法であるため、生きているヒトにおいて海馬神経新生を検出する方法が未だに存在しないことである。そのため、うつ病患者において実際に成体海馬神経新生が減少しているのか、治療により回復するのかを直接的に検証することができない状況が続いている。これは基礎から臨床へのフィードバックを阻む根本的なボトルネックとなっている。

生体での成体海馬神経細胞新生検出に向けて、これまでも様々なアプローチが試みられてきた。過去に注目された報告として、磁気共鳴分光法 (MRS)を用いた神経幹細胞に特異的とされる脂質由来のシグナルの検出が挙げられる「⁹⁾。この研究では、まず脳内の各細胞種の培養系を用いて神経幹細胞に特異的なシグナルを見出し、続いて動物実験でその妥当性を確認した後、ヒトでの検出を試みた。その結果、生きているヒトの海馬歯状回で神経幹細胞特異的とされるシグナルが検出された。この発見は神経細胞新生研究のコミュニティに大きな興奮をもたらした(筆者もこの研究を初めて知った時はかなり興奮したものである)が、その後の研究で残念ながら再現されず、実現

には至らなかった。脳内の脂質代謝は極めて複雑であり、神経幹細胞特異的なシグナルを他の細胞種由来のシグナルから明確に分離するのは困難であるため、MRSによるアプローチの可能性は厳しいと考えられる。

分裂細胞に取り込まれるチミジン類似体を放射性同位体で標識したトレーサー([18F] FLT:フルオロチミジン)を用いることで、神経細胞新生をポジトロン断層撮影(PET)で画像化する試みも行われた²⁰。動物実験では、うつ病モデルマウスでシグナルが低下し、抗うつ薬投与でシグナルが回復することが確認されたが、その後現在まで続報はなく、恐らく頓挫しているものと思われる。

このように生きているヒトで成体海馬神経細胞新生を検出する方法の開発は未だに実現していないが、近年の機械学習と AI 技術の著しい発展により、新しいアプローチの可能性が出てきている。例えば、MRI や PET など既存の画像検査で得られる複雑な画像データから、深層学習アルゴリズムを用いることで、海馬神経細胞新生に関連する微細なパターンを検出することが可能になるかもしれない。この方向性での今後の研究の発展を個人的には強く期待している。

おわりに

成体海馬神経細胞新生の発見から30年、うつ病の神経細胞新生仮説の提唱から20年が経過した現在、この分野の研究は重要な転換点に立っている。 豊富な基礎研究の蓄積により科学的基盤は極めて 堅固なものとなったが、一方で臨床応用に向けた 技術的ブレイクスルーが切実に待たれている。

特に、生きているヒトで成体海馬神経細胞新生を検出可能な生体イメージング技術の発展により、近い将来この仮説が真に臨床の場で活用される日が来ることを強く期待している。その時こそ、うつ病治療は新しい時代を迎え、より多くの患者により信頼性の高い診断とより有効な治療を提供できるようになることが強く期待される。うつ病の神経細胞新生仮説の発展が、うつ病に苦しむ世界中の多くの人々に新しい希望の光をもたらすことを切に願っており、筆者もこの分野の研究者の1人として、その発展に少しでも貢献したいと考えている。

文献

- 1) Altman J, Das GD: Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 1965; 124: 319-335.
- 2) Cameron HA, Woolley CS, McEwen BS, et al: Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 1993; 56: 337-344.
- 3) Kuhn HG, Dickinson-Anson H, Gage FH: Neurogenesis in the dentate gyrus of the adult rat: Age-related decrease of neuronal progenitor proliferation. J Neurosci 1996; 16: 2027-2033.
- 4) Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al: Neurogenesis in the adult human hippocampus. Nat Med 1998; 4:1313-1317.
- 5) Kempermann G, Jessberger S, Steiner B, et al: Milestones of neuronal development in the adult hippocampus. Trends Neurosci 2004; 27: 447-452.
- 6) de Kloet ER, Joels M, Holsboer F: Stress and brain: From adaptation to disease. Nat Rev Neurosci 2005; 6:463-475.
- 7) Starkman MN, Giordani B, Gebarski SS, et al: Decrease in cortisol reverses human hippocampal volume atrophy following treatment of Cushing's disease. Biol Psychiatry 1999; 46: 1595–1602.
- 8) Cameron HA, Gould E: Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience 1994; 61: 203-209.
- 9) Videbech P, Ravnkilde B: Hippocampal volume and depression: A meta-analysis of MRI studies. Am J Psychiatry 2004; 161:1957–1966.
- 10) Malberg JE, Eisch AJ, Nestler EJ, et al: Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104-9110.
- 11) Santarelli L, Saxe M, Gross C, et al: Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.
- 12) Encinas JM, Vaahtokari A, Enikilopov RM: Fluoxetine targets early progenitor cells in the

- adult brain. Proc Natl Acad Sci USA 2006; 103: 8233-8238.
- 13) Boku S, Nakagawa S, Masuda T, et al: Glucocorticoids and lithium reciprocally regulate the proliferation of adult dentate gyrus-derived neural precursor cells through GSK-3β and β-catenin/ TCF pathway. Neuropsychopharmacology 2009, 34:805-815.
- 14) Masuda T, Nakagawa S, Boku S, et al: Noradrenaline increases neural precursor cells derived from adult rat dentate gyrus through beta2 receptor. Prog Neuropsychopharmacol Biol Psychiatry 2012; 36: 44-51.
- 15) Boku S, Hisaoka-Nakashima K, Nakagawa S, et al: Tricyclic antidepressant amitriptyline indirectly increases the proliferation of adult dentate gyrusderived neural precursors: An involvement of astrocytes. PLoS One 2013; 8: e79371.
- 16) Boku S, Nakagawa S, Toda H, et al: Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci 2018; 72: 3-12.
- 17) Nakagawa S, Kim JE, Lee R, et al: Regulation of neurogenesis in adult mouse hippocampus by cAMP and the cAMP response element-binding protein. J Neurosci 2002; 22: 3673–3682.
- 18) Koga Y, Kajitani N, Miyako K, et al: TCF7L2: A potential key regulator of antidepressant effects on hippocampal astrocytes in depression model mice. J Psychiatr Res 2024; 170: 375-386.
- 19) Manganas LN, Zhang X, Li Y, et al: Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 2007: 318: 980-985.
- 20) Tamura Y, Takahashi K, Takata K, et al:
 Noninvasive evaluation of cellular proliferative
 activity in brain neurogenic regions in rats under
 depression and treatment by enhanced [18F]
 FLT-PET imaging. J Neurosci 2016; 36: 81238131.